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Measuring Gravitational Waves 
Across the Frequency Spectrum
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Overview

• Introduction to Gravitational Waves 


• High Frequency GWs: Interferometry w/ LIGO/LISA 


• Low Frequency GWs: More “Traditional” w/ PTAs and CMB
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Prologue: Introduction to GWs
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Gravitational Waves

• GWs are perturbations in spacetime that 
propagate as waves


• Analogous to EM waves in many ways: 
speed c, propagate in vacuum, etc


• Predicted as a result of GR 


• Only recently directly detected for the first 
time (2015)


• A new way to examine phenomena.

Introduction
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Gravitational Waves
Sources 
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GWs are sourced by cataclysmic gravitational events. 

Mergers SupernovaePulsars Big Bang/Inflation



Gravitational Waves
Mathematics
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Spherical Harmonic Breakdown for BBH

Two D.O.F (Polarizations) No Monopole/Dipole!
Signal depends on source 

parameters! (In this case a BBH)



Gravitational Waves
Scale
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Why aren’t we torn apart by GW’s?

By the time they reach us, these events are extremely small…


Most LIGO detections only see effects on length scales of 10^-19 m!

That is 1/1000th 
the width of a 

proton.

That is 
1/1,000,000,000th 
(billionth) the width 

of an atom.

That is 
1/10,000,000,000,000th 
(ten trillionth) the width 

of a fine hair.

This makes them incredibly difficult to detect.



Gravitational Waves
Spectra
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Part I: High Frequency 
Gravitational Waves 

(Interferometry)
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LIGO Interferometry
Introduction
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• High frequency gravitational waves 
detection uses interferometry 


• GWs adjust Michelson Interferometer 
lengths to yield signals


• Allows for a “direct” waveform 
measurement


• Currently sensitive to GWs from 
BBH/BNS mergers, supernovae, 
pulsars (> 1 Hz)



LIGO Interferometry
Immense Scale
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40 W Laser 4 km long arms Power recycling & reflection 
(eff. 1200 km, 740 kw)



LIGO Interferometry
Noise Reduction
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Quadruple 
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LIGO Interferometry
Statistical Methods
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Frequency Domain

Match Filtering

Multiple Detections



LIGO Interferometry
Success!
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Many Other Events After!GW150914



LIGO Interferometry
Current Generation Detectors
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LISA Interferometry

• Seismic activity limits detecting <1 Hz 
GWs w/ LIGO


• Can find mHz GWs w/ space based 
detector 


• More event types: larger BBHs, white 
dwarf binaries, objects falling into SMBH


• “Pathfinder” proof of concept successful 
in 2017


• Fully funded, shooting for ~2030’s

Space-Based Observatory
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LISA Interferometry
Massive Scale

4 km long arms
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Next Generation Detectors
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Einstein Telescope (EU)Cosmic Explorer (US): 40 km x 40 km



Next Generation Detectors

19

Sensitivities



Part II: Low Frequency 
Gravitational Waves (“Traditional” 

Astronomy)
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Pulsar Timing Arrays
Introduction

• GWs produced by SMBHBs have 
frequencies ~nHz scale


• Interferometers have no chance of detecting 
this


• GWs affect space -> slowly varying GWs 
affect the time astronomical signals reach us


• Need a very accurate clock for this -> 
pulsars
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Pulsar Timing Arrays
Pulsars

• Pulsars: rotating neutron stars with a 
characteristic “pulse” 


• Pulse from magnetic radiation misaligned 
w/ rotation (“lighthouse affect”)


• ms period pulsars are highly accurate


• Observed in gamma/radio rays primarily


• Low frequency GWs affect the highly 
precise period in a detectable manner
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Pulsar Timing Arrays
Pulsar Timing Models

temit = tarriv − ΔtGW − Δtother
Arrival Time vs Emitted Time

• Because of the consistent period, 
we have an model of the expected 
arrival times given the original 
arrival time.


• Can calculate the difference 
between the expected arrival time 
(after accounting for other effects) 
and the measured arrival time


• This should give evidence of GW 
timing changes.

Timing Model (no GWs)

Signal

23



Pulsar Timing Arrays
Stochastic GWs

• Not enough information from a 
single pulsar or single GW


• Look for correlations between 
pulsars to look for evidence of GWs 
produced stochastically


• Can derive the “Hellings-Down” 
curve between separation and 
timing deviation
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Pulsar Timing Arrays
Telescope Network
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Pulsar Timing Arrays
Success!
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CMB Polarization
Primordial Gravitational Waves

• Predict GW background from 
primordial universe -> inflation


• Some have timescales at age of 
universe


• Only way to detect these through 
CMB polarization


• Early GW’s should leave a unique 
“imprint” on the polarization, deviation 
from isotropies
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CMB Polarization
Polarization

• Polarization of CMB can be broken-down into E and B modes


• Not electric/magnetic field, called such because they are mathematically 
analogous


• Early universe density changes dominate anisotropies but only affect E 
modes


• B mode polarization = “smoking gun” of GWs
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CMB Polarization
No Evidence Yet :(

We thought in 2014… but no.
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Summary
• GW Physics is a burgeoning field still in its infancy in a lot of ways, with several 

collaborations across the frequency spectrum: LIGO/LISA, PTA collaborations, 
CMB collaborations, etc.


• In the > 1 Hz range, we can directly measure gravitational wave signals using 
ground-based interferometry, signals from 1-100 solar mass BBH’s and BNS’s.


• In the mHz range, we expect to use space-based interferometry to detect 
signals larger BBH’s and merging white dwarves. 


• In the nHz range, PTA analyses have successfully detected a stochastic 
gravitational wave background likely from merging SMBHBs.


• We hope to find an imprint of primordial GW’s (timescales of the universe’s 
age) in the B-modes of the CMB polarization.
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